US009063725B2

a2 United States Patent 10) Patent No.: US 9,063,725 B2
Tseitlin et al. (45) Date of Patent: Jun. 23, 2015
(54) PORTABLE MANAGEMENT 5,179,703 A * 1/1993 Evans ... 717/122
5,339,430 A 8/1994 Lundin et al. 717/170
. : D . 5,432,937 A 7/1995 Tevanian et al. . 717/162
(75) Inventors: 3r1e.l]l)i(TseltllnMSunIgvalﬁ, %2 (gi)s 5.583.083 A * 12/1996 Schmitter ... 217138
aniel Kearns, Moss Beach, CA (US); 5625804 A 4/1997 Cooperetal. 717/170
William B. Kilgore, Tempe, AZ (US) 5644771 A 7/1997 Endicott etal. . .. 717/170
5,826,265 A 10/1998 Van Huben et al. .. 707/E17.005
(73) Assignee: Oracle International Corporation, 5,920,867 A 7/1999 Van Huben etal. .. 707/E17.007
Redwood Shores, CA (US) 5,943,674 A * 8/1999 Schofieldcc...... 717/140
’ 6,018,627 A 1/2000 Iyengar 717/103
. 6,066,181 A 5/2000 DeMaster 717/148
(*) Notice: Subject. to any dlsclalmer,. the term of this 6.074432 A 6/2000 Guccione ... 17163
patent is extended or adjusted under 35 6,151,643 A 11/2000 Cheng et al. ... 709/200
U.S.C. 154(b) by 1390 days. 6,154,878 A 11/2000 Saboff VA VK
6,199,195 B1* 3/2001 Goodwin et al. .. 717/108
. 6,286,134 Bl 9/2001 Click et al. 717/138
(21) Appl. No.: 11/426,248 6330569 Bl 122001 Baisley et al. ... 717/168
. 6,408,311 Bl 6/2002 Baisleyetal. 707/999.203
(22) Filed: Jun. 23, 2006 6442752 Bl /2002 Jennings et al. 717/162
(65) Prior Publication Data (Continued)
US 2007/0260629 A1 Nowv. 8, 2007 OTHER PUBLICATIONS
Related U.S. Application Data Polze, Andreas, ‘.‘Component Programming .VVith. J2.EE and NET”;
o o Feb. 27, 2004, Discourse lectures at the Berlin Distributed Comput-
(60) Provisional application No. 60/693,623, filed on Jun. ing Laboratory, Downloaded from http://user.cs.tu-berlin.de/
24, 2005. ~mwerner/discourse/BlockLVS04/slides/Components.pdf on Jun.
14, 2004; pp. 1-10.
(51) Int.ClL PP ,
GOGF 944 (2006.01) (Continued)
GOG6F 9/445 (2006.01)
(52) US.CL Primary Examiner — Don Wong
CPC .. GOGF 8/31 (2013.01); GOGF 8/20 (2013.01); Assistant Examiner — Theodore Hebert
GO6F 8/60 (2013.01) (74) Attorney, Agent, or Firm — Campbell Stephenson LLP
(58) Field of Classification Search
CPC e, GO6F 8/20; GO6F 8/31 (57 ABSTRACT
USPC e : 7177137 A method is provided. The method composes management
See application file for complete search history. code in a platform independent managed object format. Fur-
. ther, the management code is utilized to manage at least one
(56) References Cited

U.S. PATENT DOCUMENTS

5,067,072 A 11/1991 Talatietal.oco... 717/148
5,175,856 A 12/1992 Van Dyke etal. 717/151
302
N
304 Enterprise Module Assembly System

Enterprise Application

351 =+
NI
ssa] —
B
Enterprise Module C
354 + |
as5. L
356 1]

Enterprise Module F

object. In addition, the management code transforms the
management code into a plurality of portable management
objects and a plurality of native management objects.

25 Claims, 20 Drawing Sheets

/" 310

Customer Site

US 9,063,725 B2

Page 2
(56) References Cited 2004/0187140 A1 9/2004 Aigneretal. 719/328
2004/0216133 Al 10/2004 Roush 719/316
U.S. PATENT DOCUMENTS 2004/0223009 Al 112004 Szladovicsetal. 345/760
2005/0034137 Al 2/2005 Bartzetal.ccoeenne 719/328

6,473,748 Bl 10/2002 Archerococoovevvvevrenen, 706/45 2005/0037735 Al 2/2005 Couttsccoeeeviiiiiennns 455/411

6,477434 Bl 11/2002 Wewalaarachchi et al. ... 700/83 2005/0097543 Al 5/2005 Hirayama . . 717/168

6,571,140 Bl 5/2003 Wewalaarachchi etal. 700/83 2005/0160104 Al 7/2005 Meera et al. 707/100

6,584,507 Bl 6/2003 Bradleyetal. o 709/223 2005/0240558 Al 10/2005 Giletal. e 707/1

6,738,967 Bl 5/2004 Radigan T717/146 2006/0031827 Al 2/2006 Barfield etal. 717/168

6,738,975 Bl 5/2004 Yee et al. . 719310 2006/0075398 Al 4/2006 Bennett et al. 717/170

6,757,893 Bl 6/2004 Haikin T717/170 2006/0080682 Al 4/2006 Anwaretal. 719/331

6,865,733 B2 3/2005 Broussard 704/200 2006/0101429 Al 5/2006 Osborne et al. 717137

6,915,513 B2 7/2005 Duesterwald et al. 717/169 2006/0117298 Al 6/2006 Delapedraja et al. ... 717/120

6,971,090 B1* 11/2005 Gruttadauria et al. 717/136 2006/0184980 Al 82006 Coleccocee. - 725/100

7,003,783 B2 2/2006 Skaringer et al. 719/332 2007/0022404 Al* 1/2007 Zhangetal. .. . 717/103

7,051,324 B2* 5/2006 Gisseletal. 717/166 2007/0226682 Al* 9/2007 Kilgoreetal. 717/106

7,076,765 Bl 7/2006 Omori L T717/165 2007/0250575 Al* 10/2007 Tseitlinetal. 709/205

7,225,240 Bl* 5/2007 Foxetal. . L T709/223 2007/0260629 Al* 11/2007 Tseitlinetal. 707/102

7,234,111 B2 6/2007 Chuetal. T715/251 2009/0279556 Al* 11/2009 Selitser et al. 370/401

7,293,261 B1* 11/2007 Anderson et al. 717/137 2010/0299590 Al1* 11/2010 Gissler et al. . .. 715/239

7,293,262 B2* 11/2007 Sengodan 717/136 2013/0219370 Al* 82013 Bealeetal. 717/128

7,305,669 B2* 12/2007 Roush 717/170

7,313,782 B2 12/2007 Lurieetal. 717/168 OTHER PUBLICATIONS

;’i;‘g’;g g%* 13;3882 Is’lej(i(s)}\;lgts :lt al ;};;}gg Moore, Bill, et al., “Migrating WebLogic Applications to WebSphere

74441625 B2 10/2008 Anwaretal. ... 717/140 Advanced Edition” IBM Redbooks, Jan. 2001, pp. 17-31.

7,458,073 Bl 11/2008 Darling et al. 707/168 Gregory, Kate, “Microsoft® Visual C++®.NET 2003,” Dec. 2003,

7,562,358 B2* 7/2009 Bennett et al. e 717/170 Sams Publishing, pp. 92-108.

7,610,316 B2 10/2009 Bartzetal.co........ 717/170 SGI, Building Software for Multiple Architectures, Silicon Graphics

7,770,158 B2 8/2010 Osborneetal. 717116 International Corp. (Jul. 21, 1994) retrieved from http://techpubs.sgi.

7,779,405 B2 82010 Gorti e 717172 com/library/tpl/cgi-bin/getdoc.cgi?coll=0620&&db=bks&srch=

7,886,108 B2 2/2011 Tseitlin et al. o 709/217 &fname=/SGI__End User/C1rC__UG/sgi__hmtl/ch14.html on May

8,332,830 B2 12/2012 Kantorowitzetal. ... 717/148 28 2014, pp. 3.

8,635,595 B2* 1/2014 Melillo e T17/120 IBM; “IBM Terminology—Terms E”. Retrieved from http://www-
2002/0107995 Al 8/2002 Skaringer et al. ... 717/173 0Lib m/software/elobalization/terminology/e.htm S 5
2002/0116698 Al 82002 Lurieetal. 717/100 ADMLCOmSottware' g oObalizatio/termnology/e.itm.-on >ep. 2,
2003/0101431 Al 5/2003 Duesterwald etal. ... 717/126 2011 pp. 1, 22, 55, and 56. _ _

2003/0221190 Al 11/2003 Deshpande etal. 717/171 Delorie Softare, 2.1, Command Line Options, delore.com (Jun.
2003/0233631 Al 12/2003 Curryetal.co.cco........ 717/100 2003) retrieved from http://www.delore.com/gnu/docs/binutils/ID__
2004/0015816 Al 1/2004 Hines etal. 717/101 3:html on Sep. 27, 2014.

2004/0143826 Al* 7/2004 Gissel et al. ... 717/162

2004/0181779 ALl™* 9/2004 GoOrti «.coovoveeveeeceennnne 717/120 * cited by examiner

US 9,063,725 B2

Sheet 1 of 20

Jun. 23, 2015

U.S. Patent

981 —

v81

881 —1

28—

suoneolddy Jayip/Aceben

$9I14 TTINX

AN

asegele(

A uonedlddy asudiaiug

(LY Joud) | ainbi4

FRLLLEL LR LR LR LY
[]

= uoeolddy [euCIHPPY &

g 8|npoy asudiaiug

— ¥l

1 a|npo esudisiug

AN

80IAI8S 8SBgRIR(

081

$82.N0S Ble(

A

A 4

g e|npoy esudisiug

V 8|npo esudisiug

[/

uoneolddy esudieiug

S~

waisAg JsIndwon) s, Jewoisny

12°1
—— €SI

—— Sl

— IG1

09}

OLL

US 9,063,725 B2

Sheet 2 of 20

Jun. 23, 2015

U.S. Patent

(Uy Joud) 2 8inbi

06¢

aseqeieq | *
X Jswoisn |
m X lawoisng mNanmNm
082 mem
...................’
eseqeieq | *
: . Zed
: A Jswolsn) : JowoisnD
A Jewoisny =

-

G8¢ ¢8¢

EEEEEEEEEEEEEEEEEE,

. oSEqEIEq | fe—e0
: | XJewosnd T yaewasnd
X Jewoisny =

-

82 I8¢

X Jawoisng

Z 90lnleg oseqeleq asudialuy | | :
S~

A 80InIeg aseqele(asudisiug | |
I

X 8oinieg eseqereq espdisiug ||
~—

_—ssonog BRg

uoneslddy esudisiug

AT
g 9|npo asudisiug N
0 9INPO asudialug N = G
N~
N g e|npoyy esldiejul N [+ €52
N v enpopy esudieluzg ///1 2se
~
[+ 162
uoneolddy esidisjug /

US 9,063,725 B2

Sheet 3 of 20

Jun. 23, 2015

U.S. Patent

¢ ainbi4

Lye
N

SN NN NN SN SES NN NSNS NI NN AN NN NI N RSSO RER R

4 9|npoN asudiaug

1

3 a|npo asudisjul 96¢

: uopeolddy [euonippy =

Sssusssssssnnnssssnssene®

a)Is Jawojsny)

a e|npo\ asudieju] - GG¢

T ¥Ge

1 9|npo asudisjug

LB IIIIIIIIIIIIIIIIIIIIIIII.IIIIIIIIII.

— €G¢€

g ajnpop asudiaug

|

|

/

V 2|npoj asudiojug —= ¢G¢€

(L

= LGE
uonesiddy esudisju]

3% \\\\

/

v0¢€

WIRISAS A|quiassy ajnpo asudisjug

¢0¢

US 9,063,725 B2

Sheet 4 of 20

Jun. 23, 2015

U.S. Patent

$ ainbi4

uoneoljdde aiemyos ayj yym
a|npow asudiajua ay} Buneibaju)

3

Janlas uonedijdde ue 0}
ajnpow asudiajus ay} buipinoid

Z0 g

sa|npow asudiajus jo Ajjeinid e woly
a|inpow asudiajua ue Hulyosjeg

00¥ \\

US 9,063,725 B2

Sheet 5 of 20

Jun. 23, 2015

U.S. Patent

G ainbi4

€S

S~

YomjaN Jandwon) s tawolsn)

A

34

069 y

\L : uoneoyddy [euolippy =

aseqeje(
uones|ddy
asudiaug

2 9inpoW esudisjug

Jonleg aseqejeq lanieg uonedljddy

F\ 099

€G¢E

g ainpo asudiejug

]

V 9|hpo esudiajug

1an19g uoneonddy

N
N

a)ig Jswojsn)

— Gt

—1GE
~ 099

4GS

/Sm

US 9,063,725 B2

Sheet 6 of 20

Jun. 23, 2015

U.S. Patent

1GE \\|/
_ ajnpoyy esudiajug _A|

959 |\|\J

walsAg Bulbeyoey

g ainbi4

$90IN0SaY
L

]

wfossusnue

I Y

¢mw\|\|/

apon

12lqo asudiaug

wvm\\l)

Jayun
pue sapdwo D
Ts9 q i °
Areiqry
sjgenod

Susesnnnsesspasraany

sioyduosaq
juswioldaq

elepejan

Aseag s0inog
uonossIs| ! | juspusdeg :
wuogeld Jsyubowsuel | :
\ : jusuodwo)] :
059 f/ v
8po9 80Jnog beg :
wepuadspu) uwuoye|d 0€9 :
A%] Y i

N-ovo

N—gg9

sansey

SJulod uoisualxgy
7 jusuodwio) uspuadaq wiope|d

i 879

SaulyoeW Q18IS
) Jusuodwo) Juapuadaqg wuopeld

\2-9z9

sajny ssauisng
r yusuodwo) yuapuadaq wiope|d

N—$29

s85§59%0.1d ssauishg
| jusucdwo?) yuspuadaq wiope|d

\+-229

Buijjes somueg
H jusuodwo?) juspuadaq wiojeld

INS-029

SO0INIRG
9 jusuodwio) Juspuadeq uuoge|d

819

aoeuaju| Jas)
4 Wauodwon yJuapuade(wuogpe|d

Ni-919

}omawely adIAS
3 jusuodwo?) yuspuadaq wiopeid

N-PLO

suonuyaq sINPo
Q weuodwio) Juepuads wiogeld

N219

_/
209
009 \.\

sadA] eleq
1 Jusuodwon juspuada wuoge|d

019

3
©

BuypueH uondsoxy
g wsuodwos spuadeg wioje|d

5809

Aotjod Aunoag
v Wwauodwo) spuada(g wiofie|d

N2-909

US 9,063,725 B2

Sheet 7 of 20

Jun. 23, 2015

U.S. Patent

J ainbi4

004

1474

[AY]

0LL

804

904

14072

c0L

ajnpow asudisjua ue ojul sjoejie Juspuadap uuogjeid jo
Ayjeanid ay) pue apoo joalqo juspuadep wiopeld ay) Buibexoed

h

2poJ 32IN0S
yuspusdapul wioe|d ay) pue sjoeppe Juapuadap uuojeld
ayy Bupjuyy pue Buiidwos Aq apoo josiqo asudisjua bunelsuab

A

sjusuodwios Juspuadapul uuogpeid
10 19s 8y} Joj apo2 221n0s Juspuadapul wiojeld Huuedeid

sjoejijie Juspuadap uuojeld jo Ayjelnid e ajelsusb Ajjeonewolne
03 Jayubowsuel) e 0) apo2 Ja3ndwod Joensge auyy Buipiaoid

A

sabenbue| Jaindwoo joensqe [aas]-ybiy Ajjeinid e jJo suo jses)
Je 0} Butpio22e sjuauodwiod Juapuadap wiogeld jo jas ayj ul
sjusuodwod ayj Jo yaes 1oy 8poo 1aindwod pensqe buuedaid

A

sjuauodwos Juspuadapur uloyeld Jo 38s & pue sjusuodwiod
juspuadap wuofe|d jo jos e ojul sjusuodwiod Jo Jas ay) Huipiaip

A

AL

g|npow asudiajus auy) Ul
apnoul 0} sjusuodwod jo J8s e Buluiuusjep

\\l\l\\

US 9,063,725 B2

Sheet 8 of 20

Jun. 23, 2015

U.S. Patent

SEeM

S|M

wme

aagl

.

g 24nbi4

gi8

\\|va

osgl

Joudse

vi8 L

¢é8

eAef

908 L

008 \\\

JusiolsUIop

-

cl8

Jaujop

o|qeyod

RIS RFEEER

0¢8

r c08

-

v08

808

US 9,063,725 B2

Sheet 9 of 20

Jun. 23, 2015

U.S. Patent

906

6 @.nbi4

y

waoped yunoy e wouy abenbue| xeluAs Jo 10s
y1InoJ B s9z1Nn 18Y] 9p0d pa1onisuod-aid 10 15
yunoj e pue wuojield payl e wolj sbenbue| xejuis
10 18$ pJIY] B $3Z1|nN 1BY] 9p0D pa1onisucd-sid
10188 paiyl e Buipnppul Aueiql) s|geliod e e1eubisap

A

a|npow asudisaius syl 40 8o1M8S uonedldde
ue 10} P02 uspuadepul wiopeld sesodwod

wojield puooas B Wwody
afenbue| xeIUAS 0 185 PUODSS B $9ZINN 1BY] Sp0d
pPa1oNJIsu02-a1d O 18S PUOISS B pue wione|d 1.1
e wouj ebenbue| xejuAs Jo 18 18J1) B $8Z1|NN 1Y)
BpP0o paloNJISuU02-aid JO 18S 1S41) B JO UOII08SIalUI
uB sepnjoul 1ey] Aleigl| uonoss.ialul ue areubisep

US 9,063,725 B2

Sheet 10 of 20

Jun. 23, 2015

U.S. Patent

¥001

g Aeiqr

wJiogeld sAleN HO _‘ wiope|d eAileN

01 @inbi4

0G9

=

v Aleiqi]

¢00l

US 9,063,725 B2

Sheet 11 of 20

Jun. 23, 2015

U.S. Patent

L1 8inbi

oLLlL ﬁ\

149"

$321N0g Eleq $92Jnog eje

A A

|

SIMSS WBYSAS JON"

S20IAIRS WBYSAS 3321

‘

OLLL S92IM9S udieoljddy

m X b
m A 4 A 4 A
m sauelq wmo_zmlw m.hoo salelqi

BN

33cr

0 9011 /
8:\\\ H

clil

OLLi

[AV

US 9,063,725 B2

Sheet 12 of 20

Jun. 23, 2015

U.S. Patent

2l 2anbi4

oLl /\/,_\\\J
,| $924nog ejeq |,

ejepela

uoneinbyuon
pue

uopes||ddy

[sulay

#0 Aioyisoday

\

¥0Cl —]

EIEY
ener

~ 90¢C1

8021
(#0 pue eaer)

sao1AIaS uones)ddy

\ Jake anndepy

(¥ 11 eAer Jo Josqgns
20z} — r :
BN’

oL, — \\ 0L}
00z}

US 9,063,725 B2

Sheet 13 of 20

Jun. 23, 2015

U.S. Patent

¢l ainbi4
¥ 80In0say € 92IN0SaY % é
8LEL 9lEl rLEL clel
 Jusby | Juaby
Jabeuepy Jusby wom_‘k /(90¢€1L
OLElL u\
labeuel [oASIPIN Jabeuey [oASIPIN

k 3 3
14019 /(pOS |

|\\ uoneolddy juswabeuepy
0oct
K 2oel

US 9,063,725 B2

Sheet 14 of 20

Jun. 23, 2015

U.S. Patent

1 @inbi4
s109[q0
IINM
oLyl —
sueag\ . JBUBAUOYD . 40N
9p09-0}-4OWN
4
80¥1 .
yOPL F —
saoeuau|
s|qepod \\.
00¥1
90V I

US 9,063,725 B2

Sheet 15 of 20

Jun. 23, 2015

U.S. Patent

G| @inbi4

0251

8poD BANEN

-

aoelolu| Axold AlljIgenod

ap0oN BANEN

¢Sl —

vIG1

ap0o9 uoneolddy

lawNsuon
108lqO pebeuepy

— 8161

/

aoep8u| qNIS AljIgelod

ovmw\\\

18pIA0Id 199[00

womrl\\\

9061
ap0on uoneolddy

F c0S |

US 9,063,725 B2

Sheet 16 of 20

Jun. 23, 2015

U.S. Patent

91 ainbi4

sjo09lgo juswabeuew
aAljeu jo Ayjelnid e pue s)oalqo
uswabeuew ajqeuod jo Ayjeinid
B Ojul 9po9o Juswabeuew ay) wiojsuel)

yewuo} }09lqo
pabeuew juspuadapul wioje|d e
ul opo9 juswabeuew asodwod

US 9,063,725 B2

Sheet 17 of 20

Jun. 23, 2015

U.S. Patent

/) ainbi4

0 Aseagn
8|qepod

OLLL

0 Areuqry
uoloasia|

1 a|npojy asudiajugy

-
~
-

N
-
~
-

‘I.'.-IIIIIII-IIII-l.IIIIIIIII-

IIIII.III'I.I.II“ vONF

g fesgn
s|qepod

IllIIllllllllllll“ NONF

v Aeiqn
ajgepod

8041

g Leiqn
uoIPasIdU|

-:-----V-.!l 9021

g s|npop asudiaug

/

259

v Aeigry
uonossIsju|

‘lllllIlllllll..“l'l"l.ll.lll

sEEEEEEEEENEEEE Omm

v SInpoy asudisjugy

F €66

2se

1S€

US 9,063,725 B2

Sheet 18 of 20

Jun. 23, 2015

U.S. Patent

g1 ainbi4

- 9¢8l

Y8l

L

aseqgeleqg

o8l
AI— NOS
Aoysang

Aoysoday

Janies uopesyddy

oisl
8¢8l

JUSLILOJIAUT UONRINPOId
3|npopy asudiajug

98l

[A%:13 geg)

o
aseqeled

)
s
oR8Nd gzel

—

—J

foysoday

Jonlag uojedlddy v18l

8081

juswuolaug Bugsa)
a|npoW asudiajuy

0egl 9esl

o

aseqeleq
Y
——

Aopanq

m\

Aloysoday

8181

Janag uonesyddy
[4%:1"

9081

juswiuoJiaug uswdojeasQg
a|npoy asudisug

009 L

0081

FUSE I AN SN I NN E NSNS NS RN NN AN EE P EEE NN EE NN F NN NS AN NN U NN AN ATEN]

081 \\

co8i |\

US 9,063,725 B2

Sheet 19 of 20

Jun. 23, 2015

U.S. Patent

61 @inbi4

ZL61 = S

0lL61

H laneg puodes JoAlag 1sii4 H
8061

0061

UOISIOA puUOdag 104 UOISIaA }SJi4 104

\\’ 90BJIG)U| JOS() pUCOIS aoep9UY oSN 18I \/
¥061

c061

0061

US 9,063,725 B2

Sheet 20 of 20

Jun. 23, 2015

U.S. Patent

€ UOISIOA

Z UOISIOA

0Z @inbi4

910¢

8102 ////

|

|

JonsuiRy
woisng _

0 ARG _

B JoAsllRYy

— 010¢

pJepuelg [

[eu] [ew] [ow]

] UOISIaA

aoIMeg Auojisoday

¥002 L ||\\
oooz

1414

g 8oIAIeg _

1 eyoen

— 800¢

L

v @01n98 _

SidV Ejepesi

,////ll\\wvou

— 900Z

3|l Jea’

r 200¢

US 9,063,725 B2

1
PORTABLE MANAGEMENT

RELATED APPLICATION

This application claims the benefit of and priority to U.S.
Provisional Application Ser. No. 60/693,623, filed Jun. 24,
2005, the contents of which are incorporated by reference
herein in its entirety.

BACKGROUND

1. Field

A method and system are disclosed which generally relate
to computer application environments.

2. General Background

Computer systems form the backbone of modern business.
Computer systems are used in virtually every step of a busi-
ness chain. For example, computer systems are used to pur-
chase source materials, track production, monitor inventory
levels, monitor quality, set pricing, maintain customer rela-
tionships, provide accounting services, maintain a payroll,
provide employee benefits, track inbound/outbound ship-
ments, track customer satisfaction or complaints, and per-
form countless other tasks to run a business.

A number of enterprise software applications have been
created to allow a business to perform many of these business
support functions with a single integrated software applica-
tion. These enterprise software applications have provided
the businesses that employ these applications with a competi-
tive advantage. However, such enterprise software applica-
tions tend to be expansive applications that require significant
computer resources to run and knowledgeable technicians to
maintain. Furthermore, enterprise software applications tend
to be expensive programs to purchase or lease. Thus, enter-
prise software applications have mainly been used only by
very large corporations that are able to afford such infrastruc-
ture investments and continue to pay for their continued use.

Even very large corporations can have some difficulties
with large enterprise software applications. For example, a
large corporation may already have a legacy software appli-
cation that the large corporation wishes to continue using.
Thus, integrating the legacy software application with a new
enterprise software application can be difficult and require
very skilled application integrators.

Furthermore, corporations in different business segments
often have very different needs from their enterprise software
applications. Therefore, a corporation using with a “one-size-
fits-all” enterprise software application may find that the
“one-size-fits-all” enterprise software includes many unnec-
essary features. These unnecessary features needlessly cost
the corporation money and consume valuable computer
resources. The enterprise software application may also be
missing a number of desired industry-specific features for
each different corporation. These corporations must develop
these missing features internally or find another software
application that provides the needed features. If an additional
software application that provides the missing features is
located, then the corporation must integrate that additional
application with the enterprise software application.

Due to these difficulties with large enterprise software
applications, it would be desirable to find a way to make such
enterprise software applications more flexible. Specifically, it
would be desirable to allow small businesses to be able to
afford some of the features provided by enterprise software
applications. Similarly, it would be desirable to allow large
corporations to easily select and install only the needed fea-

10

15

20

25

30

35

40

45

50

55

60

65

2

tures. And finally, it would be desirable to have an ability to
easily integrate the enterprise software application with other
customized applications.

SUMMARY

In one aspect of the disclosure, a method is provided. The
method composes management code in a platform indepen-
dent managed object format. Further, the management code is
utilized to manage at least one object. In addition, the man-
agement code transforms the management code into a plural-
ity of portable management objects and a plurality of native
management objects.

In yet another aspect of the disclosure, a system is pro-
vided. The system has a unit that composes management code
in a platform independent managed object format. Further,
the system has a unit that transforms the management code
into a plurality of portable management objects and a plural-
ity of native management objects. In addition, the system has
a unit that assigns at least one console function to each of the
portable management objects and native management
objects.

In yet another aspect of the disclosure, a machine readable
medium has stored thereon a set of instructions which when
executed perform a method. The method composes manage-
ment code in a platform independent managed object format.
The management code is utilized to manage at least one
object. Further, the method transforms the management code
into a plurality of portable management objects.

BRIEF DESCRIPTION OF DRAWINGS

The above-mentioned features and objects of the present
disclosure will become more apparent with reference to the
following description taken in conjunction with the accom-
panying drawings wherein like reference numerals denote
like elements and in which:

FIG. 1 illustrates infrastructure utilized in a large and com-
plex application, such as an enterprise application.

FIG. 2 illustrates an on-line or hosted infrastructure that
can be utilized to provide an enterprise application over the
Internet.

FIG. 3 illustrates an enterprise module assembly system
that allows a customer to both host the enterprise application
software locally and only purchase the particular modules
corresponding to the services that the customer actually
needs.

FIG. 4 illustrates a process of enhancing a computer sys-
tem.

FIG. 5 illustrates an expanded view of the customer site, as
seen in FIG. 3, for which the customer can implement the
selected enterprise modules.

FIG. 6 illustrates an enterprise module construction sys-
tem.

FIG. 7 illustrates a process in which the enterprise module
can be generated.

FIG. 8 illustrates a portability tree that can be utilized to
classify a set of code as portable and another set of code as
non-portable.

FIG. 9 illustrates a process that can be utilized for creating
a plurality of libraries that can be utilized by the enterprise
module A.

FIG. 10 illustrates the intersection library.

FIG. 11 illustrates an example of a configuration in which
services can be divided into those that utilize platform inde-
pendent code and those that use platform dependent code.

US 9,063,725 B2

3

FIG. 12 illustrates a server architecture built utilizing the
configuration as seen in FIG. 11.

FIG. 13 illustrates a manager-agent architecture that can be
utilized to manage resources in an enterprise system.

FIG. 14 illustrates a block diagram for a management code
development system.

FIG. 15 illustrates a system management infrastructure.

FIG. 16 illustrates a process of providing a management
architecture.

FIG. 17 illustrates enterprise module dependencies.

FIG. 18 illustrates a system that can be utilized to construct
the plurality of enterprise modules.

FIG. 19 illustrates a block diagram of a continuous deploy-
ment architecture 1900.

FIG. 20 illustrates a metadata configuration that utilizes
metadata for continuous deployment.

DETAILED DESCRIPTION

A method and apparatus for implementing a portable and
open standards-based business application platform are dis-
closed. In the following description, for purposes of explana-
tion, specific nomenclature is set forth to provide a thorough
understanding of the present disclosure. However, it will be
apparent to one skilled in the art that these specific details are
not required in order to practice the method and apparatus
disclosed herein. For example, although reference is made to
the J2EE and. Net application platforms, the same techniques
can easily be applied to other types of application platforms.

Certain computer application tasks require very large and
complex computer software applications. For example, run-
ning an entire business operation requires a very large appli-
cation (an “enterprise application™) that can handle many
different tasks. Providing such large and complex enterprise
software applications to a customer can be a great challenge
to the enterprise software application developer.

Monolithic Application Executing at Customer Site

FIG. 1 illustrates infrastructure utilized in a large and com-
plex application, such as an enterprise application. The infra-
structure can be provided to the client by installing the enter-
prise application onto computers owned by the customer at
the customer’s premises. For instance, an enterprise applica-
tion 150 can be installed to run on a customer’s computer
system 110. The enterprise application 150 may use data
and/or services from the data sources 180, which include a
database service 182, XML files 184, and legacy/other appli-
cations 186. Further, the database service 182 stores an enter-
prise application database 188.

The enterprise application 150 can be an expensive appli-
cation, to purchase or lease, which utilizes significant com-
puter resources. Further, installing and maintaining the enter-
prise software application 150 may require knowledgeable
technicians. Thus, a smaller business might not want to use
the large and complex enterprise application 150.

Even large corporations with significant computer
resources and budgets may have difficulties with the large
enterprise application. For example, a large corporation may
already have a legacy software application that the corpora-
tion wishes to continue using. Thus, integrating the legacy
software application with a new enterprise application 150
can be difficult and require very skilled application integra-
tors.

The enterprise application 150 can include a variety of
components, which form the building blocks of the enterprise
application 150. An example of a component is a module,
which is a collection of computer code that can be written to
provide a service.

10

15

20

25

30

35

40

45

50

55

60

65

4

The enterprise application 150 may consist of many differ-
ent individual modules. For example, as illustrated in FIG. 1,
the enterprise module 150 can be composed of four individual
enterprise modules: enterprise module A 151, enterprise
module B 152, enterprise module C 153, and enterprise mod-
ule D 154. A customer may need some of the enterprise
modules while not needing others. For instance, a corporation
may have use for the enterprise module A 151 and the enter-
prise module B 152, but may have no use for the enterprise
module C 153 and the enterprise module D 154. Further, the
corporation may need an additional module that is not pro-
vided in the enterprise application 150. In those situations, the
customer develops internally or purchases an additional
application 141 that provides the features of the additional
module. If an additional application 141 that provides the
missing features is located, then the corporation must inte-
grate that additional application 141 with the enterprise appli-
cation 150. FIG. 1 illustrates the additional application 141
being integrated with the enterprise application 150. Such
development is expensive because technical skills are needed
to locate or develop the additional application 141 and then
integrate the additional application 141 with the enterprise
application 150. Accordingly, the corporation may not find
the “one-size-fits-all” enterprise application 150 to be an
optimal solution for its needs.

On-line or Hosted Application Services

As an alternative to the monolithic enterprise software
applications discussed above, enterprise application services
can be provided to customers over the Internet. FIG. 2 illus-
trates an on-line or hosted infrastructure that can be utilized to
provide an enterprise application 250 over the Internet 290.
Specifically, an enterprise application provider 205 hosts the
enterprise application 250 on a server and allows customers to
access the server on-line. The server can be located at the
enterprise application provider’s facility. The enterprise
application 250 mainly uses computer system resources 210
provided by the enterprise application provider 205. Enter-
prise application 250 includes enterprise module A 251,
enterprise module B 252, enterprise module C 253, and enter-
prise module D 254. Customers such as customer X 281,
customerY 282, and customer Z 283 can access the enterprise
application 250 over the Internet 290. Each of the customers
can have a database. For instance, the customer X 281 may
have a customer X database 284, the customer Y 282 may
have a customerY database 285, and the customer Z 283 may
have a customer Z database 286. The enterprise application
provider 205 keeps track of the different customer data using
different database services in the enterprise application data
sources 257, such as enterprise database service X 291 for
customer X 281, enterprise database service Y 292 for cus-
tomer Y 282, and enterprise database service Z 293 for cus-
tomer Z 283.

Accordingly, the infrastructure of FIG. 2 allows small busi-
nesses to enjoy enterprise application services without need-
ing to install and maintain a large enterprise application.
Customers can access, and pay for, only portions of the enter-
prise application 250. For example, the customers X 281 and
Y 282 send and receive data to and from all of the computer
resources 210, thereby accessing the entire enterprise appli-
cation 250 and all the enterprise modules, while customer Z
283 sends and receives data to and from only the enterprise
module C 253, thereby accessing only enterprise application
module C 253.

Enterprise Module Assembly of Enterprise Application
Services

A customer that prioritizes having the enterprise applica-
tion 150 on the customer’s premises may purchase the “one-

US 9,063,725 B2

5

size-fits-all” enterprise application 150 of FIG. 1. Further, a
customer that prioritizes maintaining low costs, e.g., a small
business, may purchase individual modules of the enterprise
application 250 of FIG. 2 to obtain limited enterprise appli-
cation services at a lower cost than purchasing the entire
“one-size-fits-all” enterprise application 150.

FIG. 3 illustrates an enterprise module assembly system
302 that allows a customer to both host the enterprise appli-
cation software locally and only purchase the particular mod-
ules corresponding to the services that the customer actually
needs. In addition, the enterprise module assembly system
302 allows a customer to integrate existing and/or new soft-
ware on the customer’s system with the enterprise modules
that are purchased. Accordingly, the customer can assemble
enterprise modules for particular services of an enterprise
application in combination with the existing and/or new soft-
ware on the customer’s system.

In one embodiment, the enterprise module assembly sys-
tem 302 breaks up an enterprise application 304 into indi-
vidual enterprise modules. The enterprise application 304 can
be a large complex computer application, e.g. an enterprise
application or an even larger complex application program.
The customer can then select the individual enterprise mod-
ules that the customer would like to utilize. Each of the
enterprise modules can provide a different service. For
instance, the enterprise application 304 may provide an enter-
prise module A 351 for purchasing source materials, an enter-
prise module B 352 for tracking production, an enterprise
module C 353 for monitoring inventory levels, an enterprise
module D 354 for monitoring quality, an enterprise module E
355 for setting pricing, and an enterprise module F 356 for
maintaining customer relationships. The customer may then
select which of these enterprise modules it would like to
purchase. For instance, in FIG. 3, the customer has selected
the enterprise module A, the enterprise module B, and the
enterprise module C, but has not selected the enterprise mod-
ule D, the enterprise module E, or the enterprise module F.
The customer may not have selected the enterprise module D
because the customer may already have existing software for
monitoring quality. Further, the customer may not have
selected the enterprise module E because, in the context of its
business, the customer does not need any software for setting
pricing. Finally, the customer may not have selected the enter-
prise module F because the customer plans on internally
developing an additional application 341 for maintaining cus-
tomer relationships.

The enterprise modules can be provided to the customer in
a variety of ways. For instance, technicians can physically
install the enterprise modules, which the customer has
selected, at the customer site 310. Alternatively, the enterprise
modules can be transmitted through a network, such as the
Internet, to the customer site 310.

In another embodiment, the enterprise module assembly
system 302 creates the enterprise modules as opposed to
breaking up an existing enterprise application 304. In other
words, the enterprise module assembly system 302 can create
a collection of enterprise modules, each corresponding to a
particular service, and allow a customer to select the enter-
prise modules that it would like to utilize.

FIG. 4 illustrates a process 400 of enhancing a computer
system. At a process block 402, the process 400 selects an
enterprise module from a plurality of enterprise modules. The
plurality of enterprise modules compose an enterprise appli-
cation. Further, each of the enterprise modules includes enter-
prise object code generated from platform dependent source
code and at least a subset of a plurality of platform dependent
artifacts. As will be explained below, a developer can utilize

10

15

20

25

30

35

40

45

50

55

60

65

6

the following to compose one of the enterprise modules: (1)
high-level abstract languages to automatically generate plat-
form dependent artifacts and (2) platform independent source
code. The developer can essentially proceed with develop-
ment in a portable manner because the developer can utilize a
certain set of high-level abstract languages and platform inde-
pendent source code irrespective of the customer’s native
software and hardware environment. Further, the enterprise
module is developed according to an open standard because
the enterprise object code is platform dependent to the spe-
cific customer’s native software and hardware environment.
At a process block 404, the enterprise module is provided to
an application server. The application server stores a software
application, which is generated from platform dependent
object code. In addition, at a process block 406, the enterprise
module is integrated with the software application.

FIG. 5 illustrates an expanded view of the customer site
310, as seen in FIG. 3, for which the customer can implement
the selected enterprise modules. For example, as seen in FI1G.
3, the customer selects the enterprise module A, the enterprise
module B, and the enterprise module C, but not the enterprise
module D, the enterprise module E, or the enterprise module
F. The customer may implement the selected enterprise mod-
ules on application servers, as illustrated in FIG. 5. For
instance, the customer can host the enterprise module A 351
and the enterprise module B 352 on an application server 550.
The application server 550 can then provide the services
offered by the enterprise module A 351 and the enterprise
module B 352. Further, the customer can host the enterprise
module C 353 on a different application server 560. The other
application server 560 may also host the additional applica-
tion 341 that the customer internally developed, purchased,
etc. In one embodiment, the additional application 341
includes platform dependent object code that is specific to the
software and hardware at the customer site 310. While a
developer composing the enterprise module C 353 was able to
utilize high-level abstract languages and platform indepen-
dent source code to prepare the code for the enterprise module
C 353, the packaged enterprise module C 353 includes enter-
prise object code that is platform dependent specific to the
software and hardware at the customer site 310. Since the
enterprise module C 353 and the additional application 341
both include platform dependent object code compatible with
the same platform, the enterprise module C 353 and the
additional application 341 can be easily integrated with one
another.

In addition, the customer site 310 has an enterprise appli-
cation database 590 that is hosted on a database server 557.
The enterprise application database 557 can store information
related to each of the enterprise modules and the additional
application 341 so that particular enterprise modules and/or
the additional application 341 can be searched for. In addi-
tion, the customer site 310 has a computer network 513
through which the enterprise module A 351, the enterprise
module B 352, the enterprise module C 353, the additional
application 341, and the enterprise application database ser-
vice 590 can all communicate with one another. For instance,
although the enterprise module A 351 is stored on a different
server than the additional application 341, the enterprise
module A 351 and the additional application 341 can still
communicate with one another.

Accordingly, a customer can utilize some or all of the
individual enterprise modules from the enterprise application
304 (FIG. 3). The customer site 310, as illustrated in FIG. 5,
can provide an open standards platform that has many tools
and services for application development, application inte-
gration, and application management. Thus, a customer can

US 9,063,725 B2

7

easily create new application programs, e.g., the additional
application 341, integrate the new application programs with
the enterprise modules, and manage the enterprise modules
and the new applications.

Composition of an Enterprise Module

A discussion shall now be provided regarding how an
enterprise module is generated. For ease of discussion, the
enterprise module A 351, as seen in FIG. 3, shall be utilized as
an example of an enterprise module.

The enterprise module A 351 is constructed so that it (1) is
portable and (2) utilizes an open standards platform. By being
portable, the code utilized to create the enterprise module A
351 can compile and run on more than one application plat-
form. For ease of discussion, examples shall be provided
herein that utilize J2EE and .Net, which are well known
platforms to one of ordinary skill in the art. However, other
platforms known to one of ordinary skill in the art can easily
be utilized. By being open, as discussed above, the enterprise
object code included in the enterprise module A 351 is plat-
form dependent so that the enterprise module A 351 can be
easily integrated with other applications, e.g. the additional
application 341 (FIG. 3), that have object code for the same
platform that the customer utilizes.

FIG. 6 illustrates an enterprise module construction system
600. The enterprise module construction system 600 can be
utilized to construct the enterprise module A 351. The enter-
prise module A 351 is essentially constructed by combining
platform independent source code 602 and a plurality of
platform dependent components 604.

Initially, a developer determines what components of the
enterprise module are platform independent and what com-
ponents are platform dependent. In other words, in order for
the enterprise module to eventually become native to a cus-
tomer’s system, some components of the enterprise module
will require data specific to the individual customer’s plat-
form while other components of the enterprise module will
not require data specific to the individual customer’s plat-
form.

The main algorithms utilized by the enterprise module A
351 are mostly not specific to the actual platform on which the
enterprise module A 351 is being implemented. Accordingly,
a large portion of these algorithms can be coded in platform
independent source code 602. The platform independent
source code 602 can be a subset of the syntax language of one
or more platform independent languages. Accordingly, the
platform independent source code 602 can be compiled on
any of the compilers that support one of the platform inde-
pendent languages utilized for the subsets. For instance, the
platform independent source code 602 can be a subset of the
syntax language for .Net and J2EE. If the function for con-
catenate is “‘concat” in both .Net and J2EE, then the subset
includes the function “concat”. If the compiler supports .Net,
then the use of the function “concat” is accepted by the
compiler. Similarly, if the compiler supports J2EE, then the
use of the function “concat” is also accepted by the compiler.
An example of a subset of syntax language is a subset of the
Java 1.1.4 computer language. The subset can be compiled on
either a .Net or J2EE compiler.

However, some services are platform specific. For
instance, the security policy for the enterprise module A 351
may vary significantly from one platform to another. The
high-level abstract languages provide the developer with a
way of coding the plurality of platform dependent compo-
nents 604 in a portable manner. In other words, the developer
does not have to actually code each of the platform dependent
components 604 according to the individual customer’s
native platform. The developer can utilize the same high-level

10

15

20

25

30

35

40

45

50

55

60

65

8

abstract language to code a particular platform dependent
component 604 for different customers with different native
platforms.

FIG. 6 illustrates platform dependent component A 606 for
Security Policy, platform dependent component B 608 for
Exception Handling, platform dependent component C 610
for Data Types, platform dependent component D 612 for
Module Definitions, platform dependent component E 614
for Service Framework, platform dependent component F
616 for User Interface, platform dependent component G 618
for Services, platform dependent component H 620 for Ser-
vice Calling, platform dependent component I 622 for Busi-
ness Processes, platform dependent component J 624 for
Business Rules, platform dependent component K 626 for
State Machines, and platform dependent component [, 628
for Extension Points. These are merely examples of different
platform dependent components. A subset of the platform
dependent components illustrated, a combination of the plat-
form dependent components illustrated, or completely difter-
ent platform dependent components may be utilized.

An example of a developer utilizing high-level abstract
languages would involve the developer utilizing XML to code
the platform dependent component A 606 for Security Policy
and Java to code the platform dependent component B 608 for
Exception Handling. In other words, the security policy on
different customer systems may be significantly different, but
the developer can utilize XML to code the platform depen-
dent component A 606 for Security Policy customers with
different platforms. Further, the developer can utilize Java to
code the platform dependent component B 608 for Exception
Handling for different customers. While a different high-level
abstract language could potentially be utilized to code each
platform dependent component 604, one high-level abstract
language could also be used for all of the platform dependent
components 604. In addition, a set of high-level abstract
languages can be utilized so that each high-level abstract
language may be utilized to code more than one of the plat-
form dependent components 604. For example, XML and
Java can be utilized for the plurality of platform dependent
components 604 so that half of the platform dependent com-
ponents 604 are coded in XML and half of the platform
dependent components 604 are coded in Java. In an alterna-
tive embodiment, some of the platform dependent compo-
nents illustrated in FIG. 6 may not be native to an individual
customer’s platform, and the developer may choose to clas-
sify those components as platform independent components.

The enterprise module construction system 600 provides
the platform dependent components 604, coded in the high-
level abstract language, to a component transmogtrifier 630.
Further, the component transmogrifier 630 has data regarding
the platform specifics of the particular customer for which the
enterprise module A 351 is being developed. Accordingly, the
component transmogrifier 630 can automatically convert the
code written by the developer for the platform dependent
components 604 into platform dependent source code 634. In
other words, the developer can utilize the same high-level
abstract language to generate platform dependent source code
for different platforms. The developer does not have to waste
the resources that would be needed to become familiar with
the computer languages utilized for each customer’s plat-
form.

The component transmogrifier 630 can output a plurality of
platform dependent artifacts 632. For example, the platform
dependent source code 634 is a platform dependent artifact.
Metadata 636 is also an example of a platform dependent
artifact. The metadata 636 can be any data associated with the
enterprise module A 351. For instance, the metadata 636 can

US 9,063,725 B2

9

provide information for a graphical user interface, such as
field names. Other examples of platform dependent artifacts
632 are deployment descriptors 638, XML Schema Defini-
tion 640 (“XSD”), Web Services Description Language 642
(“WSDL”), Bytecode 644, and International resources 646.
The International resources include mainly localizable arti-
facts, such as localized strings, dialogs, screens, etc.

Further, the plurality of platform dependent artifacts 632,
such as the platform dependent source code 634, are provided
to the compiler and linker 648 so that the platform dependent
source code 634 can be compiled and linked with the platform
independent source code 602. As a result, enterprise object
code 654 is generated.

In order to help facilitate software development, the mod-
ule construction system 600 provides libraries of pre-con-
structed code that the developer can utilize when program-
ming in the native platform computer languages. As the
module construction system 600 is portable, a developer can
access pre-constructed routines for any of the native platform
computer languages that are utilized. Further, an intersection
library 650 includes the set of routines that is commonly
available in each of the native platform computer language
libraries. An intersection occurs when the same name of a
function appears through each of the native computer lan-
guage libraries that are being utilized. For instance, a function
to change the orientation of an object may be called “reorient”
in both C# and Java. Even though the underlying code for the
function “reorient” may be different in C# than in Java, a
compiler that supports either C# or Java can be utilized to
change the orientation of the object. However, if the name of
the function in C# is “reorient” and the name of the function
in Java is “rotate,” the two functions may be found in the
portable library 652. Further, if there is a function in C# called
“reorient,” but no function in Java, then a function is com-
posed in Java and placed in the portable library 652. In one
embodiment, the newly written function has the same name
as the corresponding function in C#. In an alternative embodi-
ment, the newly written function has a different name than the
corresponding function in C#. The intersection library 650
and the portable library 652 are provided to the compiler and
linker 648 so that the routines that are called from the devel-
oper’s code can be found during the compilation and linkage
phase.

The enterprise object code 654 is platform specific so that
the enterprise object code 654 can be run on the customer’s
computer network 513 (FIG. 5). Further, as illustrated in FIG.
6, the enterprise object code 654 is provided to a packaging
system 656, which adds additional information to the enter-
prise object code 654 to generate the enterprise module A
351. Accordingly, the enterprise module A 351 can now be
utilized for the specific platform at the customer site 310 and
can also be seamlessly integrated with other software at the
customer site 310.

Some of the platform dependent artifacts 632 are provided
after the compiling and linking phase. For instance, metadata
may be provided to the compiler and linker 648, the enterprise
object code 654, and the packaging system 656. The metadata
can include information specific to the customer’s platform.
Accordingly, the metadata can help compile, link, and pack-
age the code for the enterprise module A 351 so that the
enterprise module A 351 can run on the customer’s native
platform. Further, the metadata can be provided to the enter-
prise module A 351 at run time so that the enterprise module
A 351 can execute according to customer specific informa-
tion.

In addition, the deployment descriptors 638, XSD 640,
WSDL 642, Bytecode 644, and International resources 646

10

15

20

25

30

35

40

45

50

55

60

65

10

can also be added to the enterprise object code 654 and to the
packaging system 656. These additional platform dependent
artifacts may provide additional information and/or code that
assists the enterprise module A 351.

FIG. 7 illustrates a process 700 in which the enterprise
module A 351 can be generated. At a process block 702, a set
of components to be included in the enterprise module A 351
is determined. Further, at a process block 704, the set of
components is divided into a set of platform dependent com-
ponents and a set of platform independent components. In
addition, at a process block 706, abstract computer code is
prepared for each of the components in the set of platform
dependent components according to at least one of a plurality
ot'high-level abstract computer languages. At a process block
708, the abstract computer code is provided to a transmogri-
fier to automatically generate a plurality of platform depen-
dent artifacts. The plurality of platform dependent artifacts
can include platform dependent source code, metadata,
deployment descriptors, XSD, WSDL, Bytecode, and Inter-
national resources. Further, at a process block 710, platform
independent source code is prepared for the set of platform
independent components. In addition, at a process block 712,
enterprise object code is generated by compiling and linking
the platform independent source code and at least a subset of
a plurality of platform dependent artifacts. For instance, the
subset of the plurality of platform dependent artifacts can
include the platform dependent source code. Finally, at a
process block 714, the platform dependent object code and
the plurality of platform dependent artifacts are packaged into
an enterprise module.

Libraries

A portability tree can be constructed to determine what
code is portable and what code is non-portable. Routines for
the portable code can be placed in the platform independent
source code 602 while routines for the non-portable code can
be placed in the portable library 652. Since a subset of plat-
form independent languages is utilized for the platform inde-
pendent code, only one routine for a particular task is placed
into the platform independent source code 602. On the other
hand, multiple routines for the same task may need to be
placed into the portable library 652 to ensure that the same
task can be performed by platform dependent code on any of
the intended platforms at the customer site 310, as seen in
FIG. 3.

FIG. 8 illustrates a portability tree 800 that can be utilized
to classify a set of code as portable and another set of code as
non-portable. The portability tree 800, as seen in FIG. 8,
depicts an example of a plurality of platforms and the relative
level of portability for each of those platforms. A portable
region 820 of the portability tree 800 indicates code that can
run on a portable platform, thereby being platform indepen-
dent. Further, a non-portable region 822 of the portability tree
800 indicates code that needs to run on a non-portable plat-
form, thereby being capable of being compiled with code
from the portable library 652. The leaflets of the portability
tree 800 are placeholders for code in actual platforms where
as any of the nodes above the leaflets are placeholders for
code in virtual platforms. Through a downward propagation
of'the portability tree 800, the virtual platforms map to leaflets
that hold code for actual platforms.

The root of the portability tree 800 is the most portable
virtual platform where as the leaflets are the most specific and
non-portable. For instance, if the code included in the enter-
prise module A 351 is written according to a portable node
802, the code can be utilized on any of the intended actual
platforms for which the leaflets store code. At the next level of
the portability tree 800, the code in the enterprise module A

US 9,063,725 B2

11

351 is written in code for either the .Net 804 node or the Java
806 node. If the code is written for the .Net 804 node, then the
code may not be compatible with the Java node 806, and vice
versa. At the next level of the portability tree 800, the code in
the enterprise module A 351 is written for the dotnet client
node 808, the aspnet node 810, the j2se node 812, or the j2ee
node 814. Code written in the dotnet client node 808 or the
aspnet node 810 is compatible with the .Net node 804. Fur-
ther, code written in the j2se node 812 or j2ee node 814 is
compatible with Java 806. At the next level of the portability
tree 800, the code in the enterprise module A 351 is written for
the wls node 816 or the was node 818. Further, code written
for the wls node 816 or the was node 818 is compatible with
j2ee node 814. One of ordinary skill in the art will be familiar
with these different platforms. Accordingly, the portability
tree 800 can be utilized to classify the different pieces of code
in the enterprise module A 351.

For instance, after performing a portability tree 800 analy-
sis on the code of the enterprise module A 351, it may be
determined that the enterprise module A 351 has a library
and/or executable with code written and/or generated at the
portable node 802, code written and/or generated for .Net
804, and code written and/or generated for the was node 818.
With respect to the code for the portable node 802, the enter-
prise module A 351 can run this code on any platform. During
abuild, code can be generated for each of the platforms in the
leaflet nodes. Accordingly, a downward propagation can be
performed to build code for each of the platforms at a lower
level. A downward propagation is intended to mean a traverse
down to the leaflets of a position in the portability tree 800.

With respect to the code for .Net node 804, the enterprise
module A 351 can run this code on any .Net platform. Further,
a downward propagation can be utilized to generate code on
any of the platforms that are leaflets from the .Net node 804,
e.g., the dotnet client node 808 and the aspnet node 810.
However, this code cannot be run on any of the leaflet nodes
of'the Java node 806, e.g., the j2se node 812 or the j2ee node
814, or any of the leaflets from the j2ee node 814, e.g., the wls
node 816 or the was node 818. The code at the leaflet nodes
needs to be compiled with the intersection library 650 and the
portable library 652 to ensure that the platform specific rou-
tines needed by the platform dependent code is available.

FIG. 9 illustrates a process 900 that can be utilized for
designating a plurality of libraries that can be utilized by the
enterprise module A 351. At a process block 902, the process
900 designates an intersection library that includes an inter-
section of a first set of pre-constructed code that utilizes a first
set of syntax language from a first platform and a second set
of pre-constructed code that utilizes a second set of syntax
language from a second platform. Further, at a process block
904, the process 900 composes platform independent code for
anapplication service for the enterprise module. The platform
independent code is compiled and linked with the intersection
library. In addition, at a process block 906, the process 900
designates a portable library that includes a third set of pre-
constructed code that utilizes a third set of syntax language
from a third platform and a fourth set of pre-constructed code
that utilizes a fourth set of syntax language from a fourth
platform. The third set of pre-constructed code and the fourth
set of pre-constructed code composed in order to accomplish
the same task, the portable library being compiled with plat-
form dependent code for a core service for the enterprise
module.

FIG. 10 illustrates the intersection library 650. Native plat-
form library A 1002 has a first set of pre-constructed code that
is included within the bounded area of platform independent
library A 1002. Further, native platform library B 1004 has a

10

15

20

25

30

35

40

45

50

55

60

65

12

second set of pre-constructed code that is included within the
bounded area of platform independent library B 1004. The
intersection library 650 includes the intersection of function
signatures, e.g., method names and arguments, from the
native platform library A 1002 and the native platform library
B 1004.

FIG. 11 illustrates an example of a configuration 1100 in
which services can be divided into those that utilize platform
independent code and those that use platform dependent
code. For instance, code can be written and/or generated so
that the code can run on either a J2EE platform 1102 or a .Net
platform 1104. The code provides application services 1106
and core services 1108. The application services 1106 include
the application logic for the enterprise module. Further, the
core services 1108 include code for the infrastructure for the
enterprise module. Examples of core services 1108 are
Generic Data Services, Bus Comp Services, and Data Access
Services. In one embodiment, the applications services 1106
are written and/or generated according to the subset of plat-
form independent computer languages while the core ser-
vices 1108 are written and/or generated according to platform
dependent computer languages. Further, the libraries 1110
include the intersection library 650 and the portable library
652 so that the pre-constructed code is available for both the
J2EE platform 1102 and the .Net platform 1104. For instance,
the intersection library 650 can provide pre-constructed code
for both the J2EE platform 1102 and the .Net platform 1104
because the intersection library 650 includes pre-constructed
code that is part of a subset of code that can run on the J2EE
platform 1102 and code that can run on the .Net platform
1104. In addition, the portable library 652 can provide pre-
constructed code for both the J2EE platform 1102 and the
Net platform 1104 because the portable library 652 includes
pre-constructed code that is platform specific for the J2EE
platform 1102 and pre-constructed code that is platform spe-
cific for the .Net platform 1104. In other words, the intersec-
tion library 650 includes pre-constructed code to perform a
task where as the portable library 652 includes multiple
pieces of codes to accommodate different platforms, such as
the J2EE platform 1102 and the .Net platform 1104. As a
result, the enterprise module can be run on any of the intended
platforms.

In addition, a set of data sources 1116 can be provided to
the core services 1108. The same data sources can be pro-
vided to either the J2EE platform 1102 or the .Net platform
1104. However, specific system services are provided to each
of'the platforms. For instance, J2EE system services 1112 are
provided to the core services 1108 and the libraries 1110. In
one embodiment, the J2EE system services 1112 are provided
to the portable library 652. Further, .Net system services 1114
are provided to the core services 1108 and the libraries 1110.
In one embodiment, the .Net system services 1114 are pro-
vided to the portable library 652.

In another embodiment, the application services 1106 are
not entirely platform independent. For instance, most of the
application services 1106 may have code which is written
and/or generated according to the syntax language for the
subset of the code that can be run on the J2EE platform 1102
or the .Net platform 1104 while some of the application
services 1106 may have multiple pieces of platform specific
code for a particular service. One piece of code can be written
and/or generated for the J2EE platform 1102 while another
piece of code for the same particular service can be written
and/or generated for the .Net platform 1104.

In yet another embodiment, most of the core services 1108
may have code which is written and/or generated according to
the platform specific syntax language for the code that can be

US 9,063,725 B2

13

run on the J2EE platform 1102 or the platform specific lan-
guage for the code that can be run on the .Net platform 1104
while some of the core services 1108 may be written and/or
generated according to the syntax language for the subset of
the code that can be run on the J2EE platform 1102 or the .Net
platform 1104.

In another embodiment, a service invocation layer may
exist between the layer for the application services 1106 and
the core services 1108. The service invocation layer may have
code which is written and/or generated according to the syn-
tax language for the subset of the code that can be run on the
J2EE platform 1102 or the .Net platform 1104. In addition,
the service invocation layer may also have code which is
written and/or generated according to the platform specific
syntax language that can be run on the J2EE platform 1102 or
code which is written and/or generated according to the plat-
form specific syntax language that can be run on the .Net
platform 1104.

Accordingly, the application services 1106 can run on both
J2EE and .Net. The interfaces for these application services
can be modeled as Web Services using WSDL and XML
Schema. For instance, the interfaces can be prepared in
WSDL and XML Schema, and can then be provided to the
component transmogrifier 630, as seen in FIG. 6, to output
platform dependent source code 634. The libraries 1110 can
then be utilized to access the J2EE system services 1112 and
the .Net system services 1114. For example, the J2EE system
services 1112 and the .Net system services 1114 can include
error handling, localizable strings, configuration, caching,
state values and statistics, diagnostics and tracing, request
context, service invocation, and XML and Web Services. A
portion of the libraries 1110 may be exposed to Java classes
while another portion of the libraries 1110 may be exposed to
Web Services.

Some of the different system services that can be utilized
for the J2EE system services 1112 and the .Net system ser-
vices 1114 shall now be described. With respect to error
handling, the error framework can be based on exceptions
prepared in C# and Java. Exceptions are utilized to signal
abnormal behavior and are not utilized to handle conditions
expected as part of the normal flow.

In addition, with respect to diagnostics, a unified mecha-
nism to monitoring the health of the system is a requirement
notonly for application developers, but for core developers as
well. A reach functional API is provided that interfaces seam-
lessly with the native platform’s facilities and that will not
incur on any significant overhead. The reach functional API
will consist of a series of APIs to log messages (including
error logging), and a mechanism to profile request process-
ing. These facilities integrate with the diagnostic tools native
to the platform where the code is executing.

Further, localizable strings can be defined as key value
pairs. Strings can be grouped by enterprise module and are
identified by the unique key for the string. The unique key can
be a symbolic name that includes a component code and a
symbolic name. Further, the localizable strings can be defined
in XML files. Each enterprise module in a source tree can
have a “strings” directory which can contain all the localized
string files for the given enterprise module.

In one embodiment, caching functionality is provided on
top of the native caching mechanisms. Accordingly, the native
caching mechanisms are taken into account when utilizing
the interfaces described above.

FIG. 12 illustrates a server architecture 1200 built utilizing
the configuration 1100 as seen in FIG. 11. The server archi-
tecture 1200 implements the application services 1106,
which can be run on both the J2EE platform 1102 and the Java

10

15

20

25

30

35

40

45

50

55

60

65

14

platform 1104 because the applications services 1106 utilize
a subset of Java 1.1.4. Further, an adaptive layer 1202 utilizes
Java and C#. Accordingly, the adaptive layer 1202 has mul-
tiple sets of code to accomplish the same task. Further, a C#
kernel 1204 and a Java kernel 1206 are each written and/or
generated. The C# kernel 1204 can be utilized with the .Net
platform 1104, and the java kernel 1206 can be utilized with
the J2EE platform 1102. Data from the J2EE platform 1102
and the .Net platform 1104 can be provided to the data sources
1116. Further, application and configuration metadata are
sent from the data sources 1116 to a repository 1208.

Management

The basic motivation for investing in an enterprise man-
agement system is to reduce the total cost of ownership
(“TCO”). Addressing system-usage optimization and simpli-
fying overall system management consoles can dramatically
reduce the cost of ownership. When enterprises would buy a
single monolithic system, system management could be con-
fined to a single proprietary console/solution developed by
the vendor. However, enterprise systems are becoming far
less monolithic and more service oriented, resulting in highly
configurable subsystems integrated together with no single
management console. As a result, there may be a decreased
purchased cost, but there may also be an increase in manage-
ment costs and higher potentials for inefficient system usage.

Just as the enterprise modules are platform independent
and open, the management architecture that is utilized to
monitor the performance of the enterprise modules is also
platform independent and open. Further, the management
architecture is utilized to monitor the health of the enterprise
modules and the system that the enterprise modules are run
on. In addition, the management architecture also commands
and controls operations.

Accordingly, the management architecture can be imple-
mented to run natively on the system utilized at the customer
site 310, as seen in FIG. 3. For instance, the management
architecture can be utilized irrespective of whether the cus-
tomer utilizes a J2EE or .Net environment. The underlying
NET system management infrastructure is Windows Man-
agement Instrumentation (“WMI”). Further, the management
infrastructure for J2EE is Java Management Extensions
(“JMX”). The management architecture can provide a set of
console functions that can be utilized in an environment such
as WMI or JMX and can be integrated seamlessly with the
console functions at the customer site 310, as seen in FIG. 3.
A console function is utilized through a graphical user inter-
face (“GUI™). In addition, the management infrastructure can
provide for a programmatic interface that allows other appli-
cations to monitor and manage the system. The programmatic
interface may not have a GUI. Further, the programmatic
interface may conduct the monitoring automatically without
any user input based on a set of conditions.

FIG. 13 illustrates a manager-agent architecture 1300 that
can be utilized to manage resources in an enterprise system.
In addition, a plurality of models are utilized to facilitate the
manager-agent architecture 1300. For instance, an organiza-
tional model can define the entities and the role of each of the
entities. Further, an information model can define the struc-
ture of the management information. In addition, a commu-
nication model can define the operations and protocol for
accessing the information model. Finally, a functional model
can define generic management services that can be utilized
to manage any resource.

A managed resource is a computer system, computer net-
work, computer application component, or enterprise module
that needs to be managed. A management application 1302
manages the managed resources. The management applica-

US 9,063,725 B2

15

tion 1302 is the software component that utilizes the infor-
mation model and communication model to gain access to
managed resources data and operations. Management appli-
cations have a large range in the functions they provide. The
management application 1302 is responsible for providing a
user interface to manage the resources. The management
application 1302 can register for event notifications (from
agents) for both operator’s views and catalysis for predefined
automated actions. In addition, the management application
1302 is responsible for obtaining (or polling) managed
resources for attribute values and invoking operations on the
managed resource. Further, an advanced management appli-
cations, such as an SNMP agent, can also automatically dis-
cover resources and operations, thereby reducing the respon-
sibility of the management application 1302. Irrespective of
the sophistication of the management application 1302, a
level of customization can be provided to allow business rules
to be configured.

A first management agent 1306 provides the infrastructure
for the communication model and informational model by
providing an adapter for a first managed resource 1312 and
the management application 1302 to integrate. This integra-
tion consists of sending data and events from the first man-
aged resource 1312 to the management application 1302 and
requesting data and commands from the management appli-
cation 1302 to the managed resource 1312. This communi-
cation is conducted with management application specific
APl and via predetermined network protocols. A second man-
agement agent 1308 can interact with a second managed
resource 1314 in a similar manner. In addition, an agent
manager 1310 can interact with multiple managed resources,
such as a third managed resource 1316 and a fourth managed
resource 1318, as opposed to a single managed resource in a
similar manner.

A midlevel manager 1304 aggregates and filters the infor-
mation from the managed resources. The midlevel manager
1304 then forwards the information to the management appli-
cation 1302 through an agent or agent manager. Further, the
midlevel manager 1304 also polls the managed resources in
the midlevel manager’s domain for availability and forwards
exceptions to the management application 1302. The
midlevel manager’s domain dictates a logical grouping of
managed resources. The grouping can be determined by
physical characteristics such as location or type. Further, the
grouping can also be determined by business characteristics,
such as application or department. Accordingly, the midlevel
manager increases the quality of information while reducing
the rate and quantity of incoming messages that are handled
by the management application 1302.

Not all resources in a distributed application need to be
managed. Further, some groups of resources are managed as
a functional unit rather than as an individual unit. This func-
tional unit may span horizontally, vertically, or both.

Managed resources span horizontally when the resources
are managed in a layered approach. For example, logging,
authentication, authorization, auditing, and request tracking
span horizontally. A group ofhorizontally managed resources
have context across a plurality of applications and can be
managed by an individual component.

Further, managed resources span vertically when the
resources are managed based on the particular application or
module for which the resource is being utilized. For instance,
vertically managed resources include web services, perfor-
mance counters, and component version.

Some managed resources may span both horizontally and
vertically. An example of such a managed resource is logging.

10

15

20

25

30

35

40

45

50

55

60

65

16

Inone embodiment, the managed resources are responsible
for exposing their managed data and operations to the man-
agement application 1302 by mapping into the information
model. The managed resource can provide a description of
itself, configuration data, and a performance metric indicat-
ing status. Further, the managed resource can be responsible
for interacting with the management application 1302 via the
agent communication model, operations, and protocol that
the management architecture utilizes.

Management data can be classified as identification data,
configuration data, statistical data, and status data. Further,
management operations can be classified as lifecycle control
(start, stop, restart, refresh, etc.), query, configure, and cus-
tom. With respect to lifecycle control, each resource has a
lifecycle. The lifecycle includes deployment, installation,
start, execution, stop, maintain, and uninstallation. Deploy-
ment is the movement of resource files to a target system.
Further, installation involves installing resources in a target
system. In addition, start includes initializing a resource that
the resource executes. Execution involves actively perform-
ing functions such as monitoring to periodically check a
resource attribute, operating to invoke operations, and con-
figuring to permanently change configuration data. Stop
includes terminating a resource so that the resource is no
longer executing. Further maintain includes applying code
and configuration changes. Finally, uninstall includes remov-
ing a resource from the target system. The management
operations are utilized to control, locally and/or remotely, all
components of a managed resource.

FIG. 14 illustrates a block diagram 1400 for a management
code development system. The management code develop-
ment system can provide a platform independent mechanism
for application developers to manage objects. Accordingly,
developers can define their managed objects in a platform
independent Managed Object Format (“MOF”) 1402. An
example of an MOF is XML. Further, an MOF-to-Code con-
verter 1404 can be used to transform the independent defini-
tion into a series of portable and native management objects.
In one embodiment, the MOF-to-Code converter 1404 con-
verts the MOF 1402 file into portable interfaces 1406,
MBeans 1408, or WMI Objects 1410.

The portable interfaces 1406 include a proxy and a stub file
that allow a resource, e.g., the first resource 1312 as seen in
FIG. 13, to be platform independent. As an example, if there
is a managed object named Example defined in the Exam-
pleMof.xml file, issuing the command mof2code ExampleM-
ofxml yields two additional class definitions: ExampleStub
and ExampleProxy. ExampleStub is used as the Example
provider base class for defining a provider for the Example
managed object. ExampleProxy is the class that application
developers use to access the Example managed object. The
generated ExampleStub class acts as the provider base class
from which managed object providers are derived from for
implementing the Example managed object provider.
ExampleStub is a thin adapter designed to interact with the
underlying native management infrastructure to provide and
revoke operations and managed objects. Further, the Exam-
pleProxy class is used by the application developer to trans-
parently interact with the Example managed object. Exam-
pleProxy is also a thin adapter designed to interact with the
underlying native management infrastructure on behalf of the
client.

In addition to the portable interfaces 1406, the MOF-to-
Code converter 1404 generates platform dependent code for a
plurality of different environments so that the actual environ-
ment that the customer utilizes is irrelevant as long as the
environment is in the plurality. For example, the MOF-to-

US 9,063,725 B2

17
Code converter 1404 produces MBeans 1408 in case the
customer has a J2EE JMX management environment or WMI
Objects 1410 in case the customer has a .Net management
environment.

FIG. 15 illustrates a system management infrastructure
1500. Accordingly, the system management infrastructure
1500 provides a set of portability stub code 1502 and a set of
portability proxy code 1504. The set of portability stub code
1502 includes application code 1506, object provider code
1508, portability stub interface code 1510, and native code
1512. The generated stub is implemented in the platform
independent layer as the portability stub interface 1510 and
provides a base mechanism for the object provider to build on
top of. The generated base class hides the underlying system
management details, thereby allowing the object provider to
only be concerned with the managed object functionality.
Further, the native code 1512 is platform dependent and pro-
vides an adapter from the platform independent layer and the
underlying system management infrastructure. Accordingly,
depending on the platform, either NET WMI objects or J2EE
JMX MBeans will be generated. In addition, the object pro-
vider code 1508 is a user-implemented class that is derived
from the generated platform stub class and is responsible for
implementing all the resource management. Further, the
object provider code is responsible for implementing the
managed resource data and operational aspects. In one
embodiment, the portability stub interface code 1510 and the
native code 1512 are generated stub code where as the appli-
cation code 1506 and the object provider code 1508 are hand
written code.

The set of portability proxy code 1504 includes application
code 1514, managed object consumer code 1516, portability
proxy interface 1518, and native code 1520. The generated
proxy for the portability proxy interface 1518 is a strongly-
typed object that allows client code to treat the managed code
as if they are in the current address/object space. Since the
generated proxy will be implemented in the platform native
language, clients are hidden from the actual underlying
implementation details and provide an object interface for
managed objects. The native code 1520 is similar to the native
code 1512. Further, the managed object consumer code 1516
is code that makes use of the managed object’s proxy code. In
one embodiment, the portability proxy interface code 1518
and the native code 1520 are generated proxy code where as
the application code 1514 and the managed object consumer
code 1516 are hand written code.

FIG. 16 illustrates a process 1600 of providing a manage-
ment architecture. At a process block 1602, the process 1600
composes management code in a platform independent man-
aged object format. The management code is utilized to man-
age at least one object. Further, at a process block 1604, the
process 1600 transforms the management code into a plural-
ity of portable management objects and a plurality of native
management objects. Alternatively, the process 1600 can
assign at least one console function to each of the portable
management objects and native management objects. Fur-
ther, the process 1600 does not have to produce both a plu-
rality of portable management objects and a plurality of
native management objects. In other words, the process 1600
can produce either a plurality of portable management objects
oraplurality of native management objects. The process 1600
can also produce one portable management or one native
management object as opposed to a plurality.

FIG. 17 illustrates enterprise module dependencies. A
library collection 1702 from the enterprise module A 351
depends on code form a library collection 1704 from the
enterprise module B 352 and a library collection 1710 from

10

15

20

25

30

35

40

45

50

55

60

65

18

the enterprise module C 353. The library collection 1702
includes the intersection library A 650 and the portable
library A 652. Further, the library collection 1704 includes an
intersection library B 1706 and a portable library B 1708. In
addition, the library collection 1710 includes an intersection
library C 1712 and a portable library C 1714.

In the example of the pre-constructed function “reorient”
discussed above, the enterprise module A 351 may wish to
utilize the function “reorient,” but may not actually have the
code stored in the library collection 1702. Further, in order for
the enterprise module A 351 to be portable, the code it utilizes
has to be able to be run on multiple platforms. For instance,
the code that supports “reorient” in the .Net platform may be
found in the library collection 1704 of the enterprise module
B 352 while the code that supports “reorient” in the J2EE
platform may be found in the library collection 1710 of the
enterprise module C 353.

As will be discussed further, the code in the enterprise
module A 351 may include libraries and/or executables. In
one embodiment, a dependency declaration is provided at the
level of the library or executable. Tags can be used to indicate
the dependencies. For instance, a “<platformDepend>" tag
can be utilized to indicate a dependency relationship. In the
context of FIG. 17, the following code is provided as an
example to illustrate the dependency of the portable library A
652 of the enterprise module A 351 to the portable library
1708 of the enterprise module B 352 and the portable library
814 of the enterprise module C 353.

<libraries>
<library name="portablelibrary A”>
<platform name="java” >
<platformDepend module="B” component="library”
name="portablelibraryB” />
<code language="java” includes="**/* java” />
</platform>
<platform name="dotnet™>
<platformDepend module="C” component="library”
name="portablelibraryC” />
<code language="java” includes="**/* java” />
</platform>
</library>

When the portable library A 652 ofthe enterprise module A
351 is compiled on a Java platform, the portable library A 652
will have a dependency to the portable library B 1704 of the
enterprise module B 352. On the other hand, when the por-
tablelibrary A 652 of the enterprise module A 351 is compiled
on a .Net platform, the portable library A 652 will have a
dependency to the portable library C 1714 of the enterprise
module C 353.

In another embodiment, the portable library A 652 of the
enterprise module A 351 may be able to rely on at least a
portion of its own code, thereby allowing the portable library
A 652 torely less, or possibly not at all, on the portable library
B 1708 of the enterprise module B 352 and the portable
library C 1714 of the enterprise module C 353. Accordingly,
an analysis is performed to determine what dependencies are
needed or whether any dependencies are needed at all.

FIG. 18 illustrates a system 1800 that can be utilized to
construct the plurality of enterprise modules. The system
1800 includes a plurality of environments. The code for the
enterprise modules can be developed through an enterprise
module development environment 1802 and tested through
an enterprise module testing environment 1804 prior to final
production in the enterprise module production environment
600.

US 9,063,725 B2

19

The enterprise module development environment 1802
includes resources 1806. Further, the resources 1806 include
an application server 1812, a repository 1818, a directory
1824, and a database 1830. In one embodiment, a Software
Configuration Management (“SCM”) system 1836 can also
be provided. The application server 1812 hosts the code that
is being developed for the enterprise module. Further, the
repository 1818 includes a metadata representation of the
user interface, business logic, services, functionality and
behavior of one or more enterprise applications. In addition,
the directory 1824 can hold files for the code. Further, the
database 1830 can hold additional data. A developer can
utilize the enterprise module development environment 1802
to develop code. Further, the enterprise module development
environment 1802 can share the resources 1806 with the
enterprise module testing environment 1804 and the enter-
prise module production environment 600. For instance, as
illustrated in FIG. 18, the enterprise module development
environment 1802 shares the resources 1806 with the reposi-
tory 1820 in the enterprise module testing environment 1204.
Further, as illustrated in F1G. 18, the enterprise module devel-
opment environment 1802 shares the resources 1806 with the
database 1834 in the enterprise module production environ-
ment in the enterprise module production environment 600.

The enterprise module testing environment 1804 includes
resources 1808. Further, the resources 1808 include an appli-
cation server 1814, a repository 1820, a directory 1826, and a
database 1832. In one embodiment, an SCM system 1838 can
also be provided. The application server 1814 hosts the code
that is being developed for the enterprise module. Further, the
repository 1820 includes a metadata representation of the
user interface, business logic, services, functionality and
behavior of one or more enterprise applications. In addition,
the directory 1826 can hold files for the code. Further, the
database 1832 can hold additional data. A developer can
utilize the enterprise module testing environment 1804 to test
the code that was developed in the enterprise module devel-
opment environment. Further, the enterprise module testing
environment 1804 can share the resources 1808 with the
enterprise module development environment 1802 and the
enterprise module production environment 600. In addition,
the enterprise module testing environment 1804 may utilize
resources from another environment. For instance, as illus-
trated in FIG. 18, the enterprise module testing environment
shares the resources 1808 with the directory 1828 in the
enterprise module production environment 600.

The enterprise module production environment 600
includes resources 1810. Further, the resources 1810 include
an application server 1816, a repository 1822, a directory
1828, and a database 1834. In one embodiment, an SCM
system 1840 can also be provided. The application server
1816 hosts the code that is being developed for the enterprise
module. Further, the repository 1822 includes a metadata
representation of the user interface, business logic, services,
functionality and behavior of one or more enterprise applica-
tions. In addition, the directory 1828 can hold files for the
code. Further, the database 1834 can hold additional data. A
developer can utilize the enterprise module production envi-
ronment 600 to produce the code that was developed in the
enterprise module development environment 1802 and tested
in the enterprise module testing environment 1804. Further,
the enterprise module production environment 600 may uti-
lize resources from another environment.

Accordingly, a system is provided that includes a plurality
of environments. A change to one of the environments is
migrated to the other environments through an automated
deployment process, without user interaction, to reduce the

10

15

20

25

30

40

45

50

55

60

65

20

likelihood of creating a problem as a result of the migration.
In other words, a modification to a piece of code in one
environment may require multiple changes to code in a dif-
ferent environment. For example, a single logical change may
encompass changes to the user-interface, compiled code,
metadata, database schemas, third party applications, runtime
parameters, seed data, operating system settings, application
data, user and group definitions in a directory, message queue
names, cryptographic key stores, business processes, office
documents, image files, etc. The automated deployment pro-
cess helps ensure that all ofthe necessary changes are made in
the environment to which code is migrated because forgetting
a change or making changes in the wrong order can result in
a non-functional environment. In another embodiment, the
deployment process can be implemented through user inter-
action without an automated process. In yet another embodi-
ment, the deployment process can be implemented through a
combination of an automated process and user interaction.

The automated deployment process can be implemented
through an installer, packager, deployer, and artifacts. The
installer is an executable responsible for offloading files
which make up the enterprise modules and for configuring the
packager and deployer applications to the point where the first
business application could be deployed to an applications
server. Further, the packager is an executable responsible for
understanding the configuration of a workspace and creating
releases based on that workspace. For example, the packager
could be pointed at directories containing repository and code
artifacts as input, and generate environment-agnostic pack-
aged applications (releases) ready for the deployer. In other
words, the packager can configure code for the different
enterprise modules that will be part of a release. For example,
in J2EE, “earfiles” would be generated. As a further example,
in .NET, “vdirs” would be generated. In addition, the pack-
ager can create related non-application server items like data-
base schemas, system parameters, or directory entries for
both J2EE and .Net. In addition, the deployer is an executable
responsible for customizing, sequencing, and executing the
deployment of a release into an environment. The deployer is
responsible for creating a working application. Finally, the
deployment automated process includes packaging artifacts,
which are the output of the packager after the packager has
herded all of the raw files and other source data into the
correct locations. Once created, the packaging artifacts are
modified by the deployer for the target environment and then
deployed in the proper sequence.

The packager essentially creates a set of standard configu-
ration information for the release, i.e., for the enterprise mod-
ules to be deployed. For instance, the packager can create
standardized deployment descriptors for an enterprise mod-
ule to run on J2EE or web.config and Metabase vdir settings
for an enterprise module to run on .Net. However, the pack-
aged will not likely be deployable to a target environment
because the package has not been customized for the target
environment. For instance, the package lacks needed infor-
mation such as which database pool to utilize, what URLs the
web services should live on, which application server particu-
lar deployment descriptors and settings should be applied to,
etc. The deployer fills in this information.

Further, the packager can handle more constructs that
application packages. For instance, the packaging may con-
sist of metadata needed by a specific deployment function.

In addition, the packager can create a preliminary depen-
dency set which includes dependencies that the repository
knows about. The deployer can thereafter generate a final
dependency set by merging the packager-generated depen-
dencies with the deployer’s knowledge of the target environ-

US 9,063,725 B2

21

ment. The final dependency set can be utilized to determine
the ordering of operations in a deployment script. For
instance, a final dependency set may include a Service A
depending on a Service B which depends on a Service C.
Accordingly, the deployment order may be Service C, Ser-
vice B, and Service A to ensure that Service C is present for
Service B and Service A, and that Service B is present for
Service A.

FIG. 19 illustrates a block diagram of a continuous deploy-
ment architecture 1900. A first user interface 1902 for the first
version is utilized for a first user to interact with the first
version. The first version can be stored on a first server 1906.
In addition, a first schema 1910 for the first version can be
stored in the first server 1906. Further, a second user interface
1904 for the second version is utilized for a second user to
interact with the second version. The second version can be
stored on a second server 1908. In addition, a second schema
1912 for the second version can be stored on the second server
1908. Accordingly, the first version can operate simulta-
neously with the second version in the same environment
because the first version can operate on the first server 1906
and the second version can operate on the second server 1908.

The first user interface 1902 is given access to both the first
server 1906 and the second server 1908. In one embodiment,
the first version is stored on both the first server 1906 and the
second server 1908 so that the first user interface 1902 can
access the first version on either server. Ifthe first version is to
be replaced by the second version on the first server 1906, the
first user can still access the first version on the second server
1908 through the first interface. Accordingly, the first user can
access the first version without an interruption in service
while there is an update.

Similarly, the second interface 1904 is given access to both
the first server 1606 and the second server 1908. In one
embodiment, the second version is stored on both the first
server 1906 and the second server 1908 so that the second user
interface 1902 can access the second version on either server.

The continuous deployment architecture 1900 supports
continuous deployment of releases to a target environment by
supporting multiple simultaneous versions of each artifact,
including business services, business object, business rules,
business events, and business process in the same environ-
ment. Accordingly, new users can be added without affecting
existing users. Further, new applications can be installed
without affecting currently running applications. In addition,
new versions of an application can be installed without
requiring all uses to immediately move to a new version.
Further, system administrators are given the opportunity to
break up and schedule downtime.

FIG. 20 illustrates a metadata configuration 2000 that uti-
lizes metadata for continuous deployment. The metadata can
be utilized to determine the version of an artifact. Accord-
ingly, by determining the version of an artifact, a compatible
schema can be utilized. Further, the metadata helps identify if
older versions are in use so that new versions can eventually
replace the old versions. New metadata can be pushed out
such that existing clients continue to function against the
current versions at the same time that new clients are able to
view the newly deployed version.

An Enterprise Archive (“.ear”) file 2002 contains an appli-
cation for J2EE. One of ordinary skill in the art will recognize
that different environments, e.g., .Net may have a different
format than a .ear file, but can nonetheless be utilized. A
service A 2006, a service B 2008, and a service C 2010 can be
provided. Further, each of these services utilizes the Metadata
APIs 2012, which include a cache 2014, a standard retriever
2016, and a custom retriever 2018. In addition, the Metadata

20

35

40

45

55

22

APIs 2012 can retrieve metadata from different versions of an
artifact, application, etc. from a repository service 2004. The
first version 2020 includes various metadata denoted by
“ml,” “m2,” “m3,” and “m8.” For instance, the metadata can
include the version number, component name, field names,
constraints, filters, etc. In addition, the second version 2022
includes various metadata denoted by “m1,” “m3,” and “m8.”
Accordingly, the second version 2022 shares some similar
metadata to the first version 2020. Further, the third version
2024 includes various metadata denoted by “m2” and “m3.”
The third version 2024 shares some similar metadata with the
first version 2020 and the second version 2022. In one
embodiment, the metadata contents of each version indicate
the version number the artifact, application, etc.

The Metadata APIs 2012 retrieves information, such as the
version number, from a Repository Service 2004, which
stores data in a repository. For instance, the standard retriever
can be utilized to retrieve standard information from the
Repository Service 2004. The custom retriever 2018 can indi-
cate customized information that should be retrieved from the
Repository Service 2004. The custom retriever 2018 provides
a request for the customized information to the standard
retriever 2016, which then retrieves standard and/or custom-
ized information from the Repository Service 2004.

After retrieving metadata contents from the Repository
Service 2004, the Metadata APIs 2012 can store the metadata
contents in a cache 2014. The services can then access the
metadata contents from the cache 2014 during runtime. In one
embodiment, the metadata contents within a version cannot
be changed. Accordingly, the metadata contents can stay con-
stant throughout deployment. Further, new metadata contents
can be deployed in a new version of an artifact, application,
etc. Multiple versions of artifacts, applications, etc. can exist
simultaneously in runtime as each version has access to the
corresponding metadata contents.

In general, routines executed to implement the embodi-
ments can be implemented as part of an operating system or a
specific application, component, program, object, module or
sequence of instructions referred to as “computer programs.”
The computer programs typically comprise one or more
instructions set at various times in various memory and stor-
age devices in a computer, and that, when read and executed
by one or more processors in a computer, cause the computer
to perform operations to execute elements involving the vari-
ous aspects.

While some embodiments have been described in the con-
text of fully functioning computers and computer systems,
those skilled in the art will appreciate that various embodi-
ments are capable of being distributed as a program product in
avariety of forms and are capable of being applied regardless
of'the particular type of machine or computer-readable media
used to actually effect the distribution.

Examples of computer-readable media include but are not
limited to recordable and non-recordable type media such as
volatile and non-volatile memory devices, read only memory
(ROM), random access memory (RAM), flash memory
devices, floppy and other removable disks, magnetic disk
storage media, optical storage media (e.g., Compact Disk
Read-Only Memory (CD ROMS), Digital Versatile Disks,
(DVDs), etc.), among others. The instructions can be embod-
ied in digital and analog communication links for electrical,
optical, acoustical or other forms of propagated signals, such
as carrier waves, infrared signals, digital signals, etc.

A machine readable medium can be used to store software
and data which when executed by a data processing system
causes the system to perform various methods. The execut-
able software and data can be stored in various places includ-

US 9,063,725 B2

23

ing for example ROM, volatile RAM, non-volatile memory
and/or cache. Portions of this software and/or data can be
stored in any one of these storage devices.

In general, a machine readable medium includes any
mechanism that provides (i.e., stores and/or transmits) infor-
mation in a form accessible by a machine (e.g., a computer,
network device, personal digital assistant, manufacturing
tool, any device with a set of one or more processors, etc.).

Some aspects can be embodied, at leastin part, in software.
That is, the techniques can be carried out in a computer
system or other data processing system in response to its
processor, such as a microprocessor, executing sequences of
instructions contained in a memory, such as ROM, volatile
RAM, non-volatile memory, cache, magnetic and optical
disks, or a remote storage device. Further, the instructions can
be downloaded into a computing device over a data network
in a form of compiled and linked version.

Alternatively, the logic to perform the processes as dis-
cussed above could be implemented in additional computer
and/or machine readable media, such as discrete hardware
components as large-scale integrated circuits (LSI’s), appli-
cation-specific integrated circuits (ASIC’s), or firmware such
as electrically erasable programmable read-only memory
(EEPROM’s).

Invarious embodiments, hardwired circuitry can be used in
combination with software instructions to implement the
embodiments. Thus, the techniques are not limited to any
specific combination of hardware circuitry and software nor
to any particular source for the instructions executed by the
data processing system.

In this description, various functions and operations are
described as being performed by or caused by software code
to simplify description. However, those skilled in the art will
recognize what is meant by such expressions is that the func-
tions result from execution of the code by a processor, such as
a Microprocessor.

Although some of the drawings illustrate a number of
operations in a particular order, operations which are not
order dependent can be reordered and other operations can be
combined or broken out. While some reordering or other
groupings are specifically mentioned, others will be apparent
to those of ordinary skill in the art and so do not present an
exhaustive list of alternatives. Moreover, it should be recog-
nized that the stages could be implemented in hardware,
firmware, software or any combination thereof.

In the foregoing specification, the disclosure has been
described with reference to specific exemplary embodiments
thereof. It will be evident that various modifications can be
made thereto without departing from the broader spirit and
scope of the following claims. The specification and drawings
are, accordingly, to be regarded in an illustrative sense rather
than a restrictive sense.

The invention claimed is:

1. A method comprising:

composing management code in a platform independent

managed object format, wherein

the management code provides a management architec-
ture,

the management architecture is configured to integrate
communication between a management application
and at least one managed resource in a target environ-
ment, and

the management application is configured to manage the
at least one managed resource; and

transforming the management code into one or more por-

table management objects and one or more native man-
agement objects,

10

15

20

25

30

35

40

45

50

55

60

65

24

wherein
the one or more portable management objects comprise
at least one portable interface configured to provide
the management application with access to the at
least one managed resource,
the one or more native management objects comprise
a first adapter configured to adapt the at least one
portable interface to interact with a first native man-
agement infrastructure of a first computing plat-
form, and
a second adapter configured to adapt the at least one
portable interface to interact with a second native
management infrastructure of a second computing
platform,
the first computing platform is incompatible with the
second computing platform, and
the target environment comprises at least one of the first
and second computing platforms.
2. The method of claim 1, further comprising
packaging the one or more portable and native manage-
ment objects with code for an application service to
produce an enterprise module, wherein
the packaging is performed in a build environment,
the enterprise module is configured to provide the appli-
cation service in the target environment, and
the at least one managed resource comprises the enter-
prise module.
3. The method of claim 1, wherein
the one or more portable management objects further com-
prise
a first object derived from a first class configured to
access the at least one managed resource, and
a second object derived from a second class configured
to implement functionality of the at least one man-
aged resource,
the at least one portable interface comprises a proxy file
comprising the first class configured to access the at least
one managed resource, and
the at least one portable interface comprises a stub file
comprising the second class configured to implement
functionality of the at least one managed resource.
4. The method of claim 1, wherein
the one or more portable management objects and one or
more native management objects are configured to
implement the management architecture in the target
environment.
5. The method of claim 2, wherein
the packaging of the enterprise module is configured to
customize the code for at least one of the first computing
platform and the second computing platform, and
the enterprise module comprises an executable application
configured to execute on at least one of the first comput-
ing platform and the second computing platform, as a
result of the packaging of the enterprise module.
6. The method of claim 4, further comprising
the first native management infrastructure is configured for
management data and operations in at least one of a
Windows operating system environment and a Java
environment.
7. The method of claim 4, wherein
the management application is configured to monitor per-
formance of the at least one managed resource via the
management architecture,
the management application is configured to monitor per-
formance of the at least one managed resource via the
management architecture,

US 9,063,725 B2

25

the management architecture comprises a plurality of
agents, and

each of the plurality of agents is configured to be commu-
nicatively coupled to a respective one of the at least one
managed resource and to the management application.

8. The method of claim 1, wherein the at least one managed

resource further comprises at least one of a native computing
platform, computer network, and computer application com-
ponents.

9. A system comprising:

a processor;

a memory coupled to the processor, said memory storing
instructions executable by the processor and executable
to
compose management code in a platform independent

managed object format, wherein
the management code provides a management archi-
tecture,
the management architecture is configured to inte-
grate communication between a management
application and at least one managed resource in a
target environment, and
the management application is configured to manage
the at least one managed resource; and
transform the management code into one or more por-
table management objects and one or more native
management objects, wherein
the one or more portable management objects com-
prise
at least one portable interface configured to provide
the management application with access to the at
least one managed resource,
the one or more native management objects comprise
a first adapter configured to adapt the at least one
portable interface to interact with a first native
management infrastructure of a first computing
platform, and
asecond adapter configured to adapt the at least one
portable interface to interact with a second native
management infrastructure of a second comput-
ing platform,
the first computing platform is incompatible with the
second computing platform, and
the target environment comprises at least one of the
first and second computing platforms.

10. The system of claim 9, wherein

the one or more portable management objects and one or
more native management objects are configured to
implement the management architecture in the target
environment.

11. The system of claim 10, wherein

the management application is configured to monitor per-
formance of the at least one managed resource via the
management architecture,

the management architecture comprises a plurality of
agents, and

each of the plurality of agents is configured to be commu-
nicatively coupled to a respective one of the at least one
managed resource and to the management application.

12. A non-transitory machine readable medium compris-

ing instructions which when executed perform a method com-
prising:

composing management code in a platform independent
managed object format, wherein
the management code provides a management architec-

ture,

10

15

20

25

30

35

40

45

50

55

60

65

26

the management architecture is configured to integrate
communication between a management application
and at least one managed resource in a target environ-
ment, and
the management application is configured to manage the
at least one managed resource; and
transforming the management code into one or more por-
table management objects and one or more native man-
agement objects, wherein
the one or more portable management objects comprise
at least one portable interface configured to provide
the management application with access to the at
least one managed resource,
the one or more native management objects comprise
a first adapter configured to adapt the at least one
portable interface to interact with a first native man-
agement infrastructure of a first computing plat-
form, and
a second adapter configured to adapt the at least one
portable interface to interact with a second native
management infrastructure of a second computing
platform,
the first computing platform is incompatible with the
second computing platform, and
the target environment comprises at least one of the first
and second computing platforms.
13. The non-transitory machine readable medium of claim
12, wherein
the one or more portable management objects and one or
more native management objects are configured to
implement the management architecture in the target
environment.
14. The non-transitory machine readable medium of claim
13, wherein
the management application is configured to monitor per-
formance of the at least one managed resource via the
management architecture,
the management architecture comprises a plurality of
agents, and
each of the plurality of agents is configured to be commu-
nicatively coupled to a respective one of the at least one
managed resource and to the management application.
15. The method of claim 3, wherein
the management application is further configured to moni-
tor health of the at least one managed resource via the
management architecture,
the second class is used as an object provider base class,
the second object comprises an object provider for the at
least one managed resource,
the object provider is derived from the object provider base
class, and
the object provider implements management of the at least
one managed resource.
16. The method of claim 1, wherein
the management application comprises a native manage-
ment application of the target environment.
17. The method of claim 1, wherein
the at least one managed resource is configured to provide
a performance metric to the management application via
the management architecture, and
the performance metric indicates status of the at least one
managed resource.
18. The method of claim 1, wherein
the management architecture is configured to implement
management operations invoked by the management
application.

US 9,063,725 B2

27

19. The method of claim 18, wherein

the at least one managed resource comprises a lifecycle,

the management operations comprise lifecycle control
operations, and

the lifecycle control operations comprise ones of opera-
tions related to deployment, installation, start, execu-
tion, stop, maintain, and uninstallation of the at least one
managed resource.

20. The method of claim 7, wherein

each of the plurality of agents is configured as a respective
adapter to communicatively couple the respective one of
the at least one managed resource with the management
application.

21. The method of claim 20, wherein

each of the at least one managed resource is configured to
utilize an information model,

the information model defines data and operations of each
of the at least one managed resource,

each of the plurality of agents are configured to utilize a
communication model,

the communication model defines operations and proto-
cols to access the information model, and

the management architecture is configured to implement
management operations invoked by the management
application via the communication model and the infor-
mation model.

22. The method of claim 7, wherein

the management architecture further comprises a plurality
of managers, and

15

20

28

each of the plurality of managers is configured to
aggregate any management information received from
the at least one managed resource via the plurality of
agents into a decreased quantity of management
information, and
forward the decreased quantity of management informa-
tion to the management application.
23. The method of claim 22, wherein
each of the plurality of managers represents a logical group
of a plurality of managed resources, and
the logical group is based on at least one of
physical characteristics of the plurality of managed
resources, and
business characteristics of the plurality of managed
resources.
24. The method of claim 5, further comprising
deploying the enterprise module from the build environ-
ment to the target environment, wherein
the executable application comprises a first collection of
computer-executable code that is compiled and linked
in the build environment.
25. The method of claim 24, wherein the deploying the

enterprise module comprises

providing the enterprise module to the target environment,
and
installing the enterprise module in the target environment.

#* #* #* #* #*

